skip to main content


Search for: All records

Creators/Authors contains: "Pouladi, Sara"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Flexible electronics and mechanically bendable devices based on Group III-N semiconductor materials are emerging; however, there are several challenges in manufacturing, such as cost reduction, device stability and flexibility, and device-performance improvement. To overcome these limitations, it is necessary to replace the brittle and expensive semiconductor wafers with single-crystalline flexible templates for a new-bandgap semiconductor platform. The substrates in the new concept of semiconductor materials have a hybrid structure consisting of a single-crystalline III-N thin film on a flexible metal tape substrate which provides a convenient and scalable roll-to-roll deposition process. We present a detailed study of a unique and simple direct epitaxial growth technique for crystallinity transformation to deliver single-crystalline GaN thin film with highly oriented grains along both a -axis and c -axis directions on a flexible and polycrystalline copper tape. A 2-dimensional (2D) graphene having the same atomic configuration as the (0001) basal plane of wurtzite structure is employed as a seed layer which plays a key role in following the III-N epitaxy growth. The DC reactive magnetron sputtering method is then applied to deposit an AlN layer under optimized conditions to achieve preferred-orientation growth. Finally, single-crystalline GaN layers (∼1 μm) are epitaxially grown using metal organic chemical vapor deposition (MOCVD) on the biaxially-textured buffer layer. The flexible single-crystalline GaN film obtained using this method provides a new way for a wide-bandgap semiconductor platform pursuing flexible, high-performance, and versatile device technology. 
    more » « less
  2. Abstract

    Accurate and continuous monitoring of eye movements using compact, low‐power‐consuming, and easily‐wearable sensors is necessary in personal and public health and safety, selected medical diagnosis techniques (point‐of‐care diagnostics), and personal entertainment systems. In this study, a highly sensitive, noninvasive, and skin‐attachable sensor made of a stable flexible piezoelectric thin film that is also free of hazardous elements to overcome the limitations of current computer‐vision‐based eye‐tracking systems and piezoelectric strain sensors is developed. The sensor fabricated from single‐crystalline III‐N thin film by a layer‐transfer technique is highly sensitive and can detect subtle movements of the eye. The flexible eye movement sensor converts the mechanical deformation (skin deflection by eye blinking and eyeball motion) with various frequencies and levels into electrical outputs. The sensor can detect abnormal eye flickering and conditions caused by fatigue and drowsiness, including overlong closure, hasty eye blinking, and half‐closed eyes. The abnormal eyeball motions, which may be the sign of several brain‐related diseases, can also be measured, as the sensor generates discernable output voltages from the direction of eyeball movements. This study provides a practical solution for continuous sensing of human eye blinking and eyeball motion as a critical part of personal healthcare, safety, and entertainment systems.

     
    more » « less